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System reliability often depends on the effort of many individuals, making reli-
ability a public good. It is well-known that purely voluntary provision of public
goods may result in a free rider problem: individuals may tend to shirk, resulting
in an inefficient level of the public good.

How much effort each individual exerts will depend on his own benefits
and costs, the efforts exerted by the other individuals, and the technology that
relates individual effort to outcomes. In the context of system reliability, we
can distinguish three prototypical cases.

Total effort. Reliability depends on the sum of the efforts exerted by the in-
dividuals.

Weakest link. Reliability depends on the minimum effort.

Best shot. Reliability depends on the maximum effort.

Each of these is a reasonable technology in different circumstances. Suppose
that there is one wall defending a city and the probability of successful defense
depends on the strength of the wall, which in turn depends on the sum of the
efforts of the builders. Alternatively, think of the wall as having varying height,
with the probability of success depending on the height at its lowest point. Or,
finally, think of a there being several walls, where only the highest one matters.
Of course, many systems involve a mixture of these cases.

1 Literature

Hirshleifer [1983] examined how public good provision varied with the three
technologies described above. His main results were:
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1. With the weakest-link technology, there will be a range of Nash equilibria
with equal contributions varying from zero to some maximum, which is
determined by the tastes of one of the agents.

2. The degree of under provision of the public good rises as the number of
contributors increases in the total effort case, but the efficient amount of
the public good and the Nash equilibrium amount will be more-or-less
constant as the number of contributors increases.

3. Efficient provision in the best-effort technology generally involves only the
agents with the lowest cost of contributing making any contributions at
all.

Cornes [1993] builds on Hirshleifer’s analysis. In particular he examines the
impact of changes in income distribution on the equilibrium allocation. Sandler
and Hartley [2001] provide a comprehensive survey of the work on alliances,
starting with the seminal contribution of Olson and Zeckhauser [1966]. Their
motivating concern is international defense with NATO as a recurring exam-
ple. In this context, it is natural to emphasize income effects since countries
with different incomes may share a greater or lesser degree of the burden of an
alliance.

The motivating example for the research reported here is computer system
reliability and security where teams of programmers and system administrators
create systems whose reliability depends on the effort they expend. In this
instance, considerations of costs, benefits, and probability of failure become
paramount, with income effects being a secondary concern. This difference in
focus gives a different flavor to the analysis, although it still retains points of
contact with the earlier work summarized in Sandler and Hartley [2001] and the
other works cited above.

2 Notation

Let x; be the effort exerted by agent ¢ = 1,2, and let P(F(x1,22)) be the
probability of successful operation of the system. Agent i receives value v; from
the successful operation of the system and effort x; costs the agent c;x;.

The expected payoff to agent ¢ is taken to be

P(F(.Tl, LL‘Q))’Ui — C;X;
and the social payoff is
P(F(x1,22))v1 + v2] — c121 — coa.

We assume that the function P(F') is differentiable, increasing in F', and is
concave, at least in the relevant region.

We examine three specifications for F, motivated by the taxonomy given
earlier.



Total effort. F(x1,x2) = 21 + 2.
Weakest link. F(x1,z2) = min(z1,22).

Best shot. F(z1,z2) = max(x1,x2).

3 Nash equilibria

We first examine the outcomes where each individual chooses effort unilaterally,
and then compare these outcomes to what would happen if the efforts were
coordinated so as to maximize social benefits minus costs.

3.1 Total effort

Agent 1 chooses z1 to solve

max vy P(x1 + 22) — c121,
x1

which has first-order conditions
v1 P (21 + x2) = 1.
Letting G be the inverse of the derivative of P’, we have
1 + x2 = G(c1/v1).

Defining 1 = G(c1/v1) we have the reaction function of agent 1 to agent 2’s
choice
fi(z2) = 21 — x2.

Similarly
fa(z1) = To — 1.

These reaction functions are plotted in Figure 1. It can easily be seen that
the unique equilibrium involves only one agent contributing effort, with the
other free riding, except in the degenerate case where each agent has the same
benefit/cost ratio: ve/co = v1/c;.

Let us suppose that va/ca > v1/c;. Then, To > Ty, so agent 2 contributes
everything and agent 1 free rides.

Fact 1 In the case of total effort, system reliability is determined by the agent
with the highest benefit-cost ratio. All other agents free ride on this agent.

The fact that we get this extreme form of free riding when utility takes
this quasilinear form is well-known; see, for example, Varian [1994] for one
exposition.
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Figure 1: Nash equilibrium in total effort case.

3.2 Weakest link

Agent 1’s problem is now

max vy P(min(z1, 22)) — c12;.
1
It is not hard to see that agent 1 will want to match agent 2’s effort if zo < 71,
and otherwise set x1 = Z;. The two agents’ reaction functions are therefore

fi(z2) = min(zs,71) (1)
fg(l‘l) = min(xl,fg). (2)

These reaction functions are plotted in Figure 2. Note that there will be a whole
range of Nash equilibria. The largest of these will be at min(Z1,Z2). This Nash
equilibrium Pareto dominates the others, so it is natural to think of it as the
likely outcome.

Fact 2 In the weakest-link case, system reliability is determined by the agent
with the lowest benefit-cost ratio.

3.3 Best shot

In the best-shot case it is not hard to see that there will always be a Nash equi-
librium where the agent with the highest benefit-cost ratio exerts all the effort.
What is more surprising is that there will sometimes be a Nash equilibrium
where the agent with the lowest benefit-cost ratio exerts all the effort.! This
can occur when the agent with the highest benefit-cost ratio chooses to exert
zero effort, leaving all responsibility to the other agent.

1T am grateful to Xiaopeng Xu for pointing this out to me.
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Figure 2: Nash equilibrium in weakest link case.

To see an example of this, suppose that the agents’ utility functions have
the form v;Inx — z; where x = min(zq,z2). (True, Inz is not a probability
distribution, but that makes no difference for what follows.)

The first-order condition is v;/x = 1, so &1 = v; or 0, depending on whether
viInzy — 2 is greater or less than vy Inzy. Hence ;1 = vy if 22 < v1/e and
x1 =0if zo > vy /e.

In order to create a simple example, suppose that v; = e and vo = 2e. This
gives us x1 = e for o2 < 1 and zero otherwise, while zo = 2e for ;1 < 2 and
zero otherwise. These reaction curves are depicted in Figure 3. Note that in
the case depicted there are two equilibria, with each agent free-riding in one of
the equilibria. (If the reaction curves were continuous, there would be another
equilibrium, but the discontinuity prevents that.)

In the “slacker equilibrium,” the agent with the highest benefit cost ratio
chooses to contribute zero, knowing that the other agent will be forced to con-
tribute. Given that the other agent does contribute, it is optimal for the slacker
to contribute zero.

The three baseline cases we have studied, total effort, weakest link, and
best shot have three different kinds of pure-strategy Nash equilibria: unique,
continuum, and (possibly) two discrete equilibria.

4 Social optimum

4.1 Total effort

The social problem solves

max P(z1 + x2)[v1 + v2] — c121 — ca2a.
ZT1,T2
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Figure 3: Nash equilibria in best-shot case.

The first-order conditions

C1 (3)
Ca. (4)

P/(Il —+ IQ)[Ul + ’UQ]

<
P'(z1 + z2)[v1 + v2] <

At the optimum, the agent with the lowest cost exerts all the effort. Let c,in =
min{cy, ca}, so that the optimum is determined by

2] + 5 = G(Cmin/(v1 + v2)). (5)
Summarizing, we have:

Fact 3 In the total effort case, there is always too little effort exerted in the
Nash equilibrium as compared with the optimum. Furthermore, when va/co >
vi/c1 but ¢; < ca, the “wrong” agent exerts the effort.

4.2 Best shot

The social and private outcomes in this case are the same as in the total effort
case.

4.3 Weakest link

The social objective is now

max P(min(x1,z2))[v1 + v2] — c121 — caa.
Tr1,T2
At the social optimum, it is obvious that x1 = x5 so we can write this problem
as
max P(x)[v1 + va] — [c1 + 2]z,
xr



which has first-order conditions
P'(z)[v1 + v2] = c1 + 2,

z1 =22 =2 = G((c1 + c2)/(v1 + v2)). (6)

Fact 4 The probability of success in the socially optimal solution is always lower
in the case of weakest link that in the case of total effort.

This occurs because the weakest link case requires equal effort from all the
agents, rather than just effort from any single agent. Hence it is inherently more
costly to increase reliability in this case.

5 Identical values, different costs

Let n be the number of agents and, for simplicity, set v; = 1 foralli =1,...,n.
In the total-effort case, the social optimum is given by

nP'(z) = minc;,
while the private optimum is determined by
P'(x) = minc;.

In the weakest-link case, the social optimum is determined by

or

while the private optimum is determined by
P'(z) = maxg;.

If we think of drawing agents from a distribution, what matters for system
reliability are the order statistics—the highest and lowest costs of effort.

Fact 5 Systems will become increasingly reliable as the number of agents in-
creases in the total efforts case, but increasingly unreliable as the number of
agents increases in the weakest link case.



6 Increasing the number of agents

Let us now suppose that v; = ¢; = 1 and that the number of agents is n. In this
case, the social optimum in the case of total effort is determined by

nP'(Z x;) =1,

or

in = G1/n).

The Nash equilibrium satisfies

P> m) =1,

i

Zx =G(1).

Fact 6 In the total efforts case with identical agents, the Nash outcome remains
constant as the number of agents is increased, but the socially optimal amount
of effort increases.

or

In weakest-link case, the social optimum is determined by
nP'(z) = n,

which means that the socially optimal amount of effort remains constant as n
increases. In the Nash equilibrium

or

Fact 7 In the weakest-link case with identical agents, the socially optimal reli-
ability and the Nash reliability are identical, regardless of the number of agents.

7 Fines and liability

7.1 Total effort

Let us return to the two-agent case, for ease of exposition, and consider the
optimal fine, that is, the fine that induces the socially optimal levels of effort.
Let us start with the total effort case, and suppose that agent 1 has the lowest
marginal cost of effort. If we impose a cost of v2 on agent 1 in the event that
the system fails, then agent 1 will want to maximize

U1P(I1 + IQ) + 1)2[1 — P(Il + IQ)] — C121.



The first order condition is
(’Ul + ’UQ)P/(.Il —+ IQ) =C1,

which is precisely the condition for social optimality. This result easily extends
to the n-person case, so we have:

Fact 8 A fine equal to the costs imposed on the other agents should be imposed
on the agent who has the lowest cost of reducing the probability of failure.

Alternatively, we could consider a strict liability rule, in which the amount
charged in the case of system failure is paid to the other agent. If the “fine” is
paid to agent 2, his optimization problem becomes

’U2P($1 + CEQ) + [1 — P(l‘l + wg)]’l}g — CoX2.

Simplifying, we have
V2 — C2T2,

so agent 2 will want to set xo = 0. But this is true in the social optimum as well,
so there is no distortion. Obviously this result is somewhat delicate; in a more
general specification, there would be some distortions from the liability payment
since it will, in general, change the behavior of agent 2. If the liability payment
is too large, it may induce agent 2 to seek to be injured. This is not merely
a theoretical issue, as it seems likely that if liability rules would be imposed,
each system failure would give rise to many plaintiffs, each of whom would seek
maximal compensation.

The fact that the agents with the least cost of effort to avoid system failure
should bear all the liability is a standard result in the economic analysis of tort
law, where it is sometimes expressed as the doctrine of the “least-cost avoider.”
As Shavell [1987], page 17-18, points out, this doctrine is correct only in rather
special circumstances, of which one is the sum-of-efforts case we are considering.

7.2 Weakest link

How does this analysis work in the weakest-link case? Since an incremental
increase in reliability requires effort to be exerted by both parties, each agent
must take into account the cost of effort of the other.

One way to do this is to make each agent face the other’s marginal cost, in
addition to facing a fine in case of system failure. Letting = min{x1,x2}, the
objective function for agent 1, say, would then be:

v P(z) — [1 — P(x)]va — c121 — coxq.
Agent 1 would want to choose x = x1 determined by

(v1 +v2)P'(x) = 1 + co,



which is the condition for social optimality. Agent 2 would make exactly the
same choice.

Let us now examine a liability rule in which each must compensate the other
in the case of system failure. The objective functions then take the form

max,, v1P(z)—(1—P))vs+ (1—P(z))vy —c1a1 (7)
max,, v2P(z)— (1—P(x))vy+ (1 — P(z))vy — caxa (8)
(9)

Note that when the system fails, each agent compensates the other for their
losses, but is in turn compensated.
Simplifying, we can express the optimization problems as

max,, v1 — V2 + vaP(x)— c1a1 (10)

max;, Vs — v +v1P(x) — caxa (11)
This leads to first order conditions

wuP'(r) = (12)
nP(x) = c (13)

If we are in the symmetric case where v; = v2 and ¢; = 3 (or more generally,
where v1¢1 = vac2), then both of these equations can be satisfied and, somewhat
surprisingly, the solution is the social optimum. Of course, if all agents are
identical, then there is no reason to impose a liability rule, since individual
optimization leads to the social optimum anyway, as was shown earlier.

If we are not in the symmetric case, the equilibrium will be determined
by min{ey/ve, c2/v1}. In this case, strict liability does not result in the social
optimum.

The resolution is to use the negligence rule. Under this doctrine, the court
establishes a level of due care, . In general, this could be different for different
parties, but that generality is not necessary for this particular case. If the system
fails, there is no liability if the level of care/effort meets or exceeds the due care
standard. If the level of care/effort was less than the due care standard, then
the party who exerted inadequate care/effort must pay the other the costs of
system failure.

Although the traditional analysis of the negligence rule assumes the courts
determine the due care standard, an alternative model could involve the insur-
ance companies setting a due care standard. For example, insurance companies
could offer a contract specifying that the insured would be reimbursed for the
costs of an accident only if he or she had exercised an appropriate standard of
due care.

Let z* be the socially optimal effort level; i.e., the level that solves

max (v1 + v2)P(x) — (c1 + ¢c2)z.

10



It therefor satisfies the first-order condition
(v1 +v2) P (%) = 1 + 2.

We need to show that if the due care standard is set at T = x*, then 21 =25 = %
is a Nash equilibrium.?

To prove this, assume that o = . We must show that the optimal choice
for agent 1 is 7 = T;. Certainly we will never have z; > T since choosing
x1 larger than T has no impact on the probability of system failure and incurs
positive cost. Will agent 1 ever want to choose z1 < Z7 Agent 1’s objective
function is

’UlP(Ccl) + (1 — P(:l?l))’UQ — C127.

Computing the derivative, and using the concavity of P(x), we find
(’Ul + 'UQ)P/(CCl) —C1 > (’Ul + 'UQ)P/(I*) — C1 = Ca.

Hence agent 1 will want to increase his level of effort when z; < Z;. Summa-
rizing:

Fact 9 In the case of weakest link, strict liability is not adequate in general to
achieve the socially optimal level of effort, and one must use a negligence rule
to induce the optimal effort.

Again, this is a standard result in liability law, which was first established
by Brown [1973]; see Proposition 2.2 in Shavell [1987], page 40. The argument
given here is easily modified to show that the negligence rule induces optimal
behavior in the sum-of-efforts case as well, or for that matter, for any other
form P(x1,x2).

8 Sequential moves

8.1 Total effort

Let us now assume that the agents move sequentially, where the agent who
moves second can observe the choice of the agent who moves first. The following
discussion is based on Varian [1994].

We assume that agent 1 moves first. The utility of agent 1 as a function of
his effort is given by,

Ul(:vl) = le(:vl + f2($1)) —C1o1.
which can be written as

Ul(:vl) = le(:vl + max{jg — 1‘1,0}) —C1o1.

20f course, there will be many other Nash equilibria as well, due to the weakest-link
technology. The legal due-care standard has the advantage of serving as a focal point to
choose the most efficient such equilibrium.

11
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Figure 4: Sequential contribution in total efforts case.

We can also write this as

U (x ) _ Ulp(fz) —cix1 for 21 < o
1= 1)1P(I1) — C121 for I Z To.

It is clear from Figure 4 that there are two possible optima: either the first
agent exerts zero effort and achieves payoff v1 P(Z2) or he contributes Z; and
achieves utility v P(Z1) — c171.

Case 1. The agent with the lowest value of v;/c; moves first. In this case the
optimal choice by the first player is to choose zero effort. This is true since

’Ulp(i'g) > ’Ulp(i'l) > ’Ulp(i'l) —C127.

Case 2. The agent with the highest value of v;/c; is the first contributor. In
this case, either contributor may free ride. If the agents have tastes that
are very similar, then the first contributor will free ride on the second’s
contribution. However, if the first mover likes the public good much more
than the second, then the first mover may prefer to contribute the entire
amount of the public good himself.

Referring to Figure 4 we see that there are two possible subgame perfect
equilibria: one is the Nash equilibrium, in which the agent who has the highest
benefit-cost ratio does everything. The other equilibrium is where the agent who
has the lowest benefit-cost contributes everything. This equilibrium cannot be
a Nash equilibrium since the threat to free ride by the agent who likes the public
good most is not credible in the simultaneous-move game.

Fact 10 The equilibrium in the sequential-move, the total-effort game always
involves the same or less reliability than the simultaneous-move game.

12



Note that it is always advantageous to move first since there are only two
possible outcomes and the first mover gets to pick the one he prefers.

Fact 11 If you want to ensure the highest level of security in the sequential-
move game, then you should make sure that the agent with the lower benefit-cost
ratio mowves first.

8.2 Best-effort and weakest-link

The best-effort case is the same as the total-effort case. The weakest-link case
is a bit more interesting. Since each agent realizes that the other agent will, at
most, match his effort, there is no point in choosing a higher level of effort than
the agent who cares the least about reliability. On the other hand, there is no
need to settle for one of the inefficient Nash equilibria either.

Fact 12 The unique equilibrium in the sequential-move game will be the Nash
equilibrium in the simultaneous-move game that has the highest level of security,
namely min(z1, T2).

Hirshleifer [1983] recognizes this and uses it as an argument for selecting the
Nash equilibrium with the highest amount of the public good as the “reasonable”
outcome.

9 Adversaries

Let us now briefly consider what happens if there is an adversary who is trying
to increase the probability of system failure. First we consider the case of just
two players, then we move to looking at what happens with a team on each side.

We let « be the effort of the defender, and y the effort of the attacker. Effort
costs the defender ¢ and the attacker d. The defender gets utility v if the system
works, and the attacker gets utility w if the system fails. We suppose that the
probability of failure depends on “net effort,” x —y, and that there is a maximal
effort £ and g for each player.

The optimization problems for the attacker and defender can be written as

max vP(z —y) —cx (14)
max w[l — P(x — y)] — dy. (15)

The first-order conditions are

vP(x—y) = ¢ (16)
wP'(z—y) = d. (17)

Let G(-) be the inverse function of P'(x — y). By the second-order condition
this has to be locally decreasing, and we will assume it is globally decreasing.

13
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Figure 5: Reaction functions in adversarial case.

We can then apply the inverse function to write the two reaction functions:
r—y = Glc/v) (18)
r—y = G(d/w). (19)

Of course, these are only the reaction functions for interior optima. Adding
in the boundary conditions gives us:

x = min{max{G(c/v) +y,0}, &} (20)
y = min{max{G(d/w)—z,0},§}. (21)

We plot these reaction functions in Figure 5. Note that there are two possible
equilibrium configurations. If ¢/v < d/w, we have * = G(c/v) and y* = 0,
while if ¢/v > d/w we have * = & and y* = & — G(d/w).

Intuitively, if the cost-benefit ratio of the defender is smaller than that of the
attacker, the attacker gives up, and the defender does just enough to keep him
at bay. If the ratio is reversed, the defender has to go all out, and the attacker
pushes to keep him there.

10 Sum of efforts and weakest link

In the sum-of-efforts case the reaction functions are:
n m
Swmi=>yi = Glej/vy) (22)
i=1 i=1

sz—zyz = G(d;/wj). (23)

Here the party with the lowest cost/benefit ratio exerts effort, while everyone
else free rides. This becomes a “battle between the champions.”

14



In the weakest link case, the conditions for optimality are:

min{zi,...,z,} —min{y,....ym} = G(c¢;/v;) (24)
min{zi,...,z,} —min{yi,...,ym} = G(d;/wy). (25)

As opposed to a “battle of champions” we now have a “battle between the
slackers,” as the outcome is determined by the weakest player on each tam.

Note that when technology is total effort, large teams have an advantage,
whereas weakest link technology confers an advantage to small teams.

11

Future work

There are several avenues worth exploring:

To what extent to these results extend to the more general framework of
Cornes [1993] and Sandler and Hartley [2001]. The possibility of Pareto
improving transfers is particularly interesting. Though Cornes [1993] ex-
amined this in the context of income transfers, knowledge transfers would
be particularly interesting in our context.

One case where transfers are important are when agents can subsidize
other agents’ actions, as in Varian [1994]. The subgame perfect equilib-
rium of “announce subsidies then choose actions” is Pareto efficient in the
case we examine.

One could look at capacity constraints on the part of the agents. For
example, each agent could put in only one unit of effort. Similarly, one
could look at increasing marginal cost of effort.

Imperfect information adds additional phenomena. For example, Herma-
lin [1998] shows that in a model with uncertainty about payoffs, an agent
may choose to move first in order to demonstrate to the other agent that
a particular choice is worthwhile. Hence “leadership” plays a role of sig-
naling to the other agents.

Arce and Sandler [2001] examine how results change when a contribution
game’s structure moves in the direction of best shot or weakest link. This
sort of partial comparative statics exercise could be of interest in our
context as well.

One could examine situations where there were communication costs among
the cooperating agents, a la team theory. If, for example, there is imper-
fect information about what others are doing, it might lead to less free
riding.
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